International Workshop on Advanced Epilepsy Treatment March 28-30, 2009, Kitakyushu, Japan (Invited Talk #2)

## What's the difference between EEG and MEG in practice?

#### Nobukazu Nakasato, MD, PhD

Department of Neurosurgery, Kohnan Hospital & Tohoku University, Sendai, Japan

# What's the difference between EEG and MEG in practice?

Introduction Theory & Practice • Evoked Responses • Single Source • Dual Source • Epileptic Spikes Detectability • Localization Orientation Summary



Number: Single

**Position: Center** 

**Orientation: Radial** 



Number: Single

**Position:** Vertex

**Orientation: Radial** 





Number: Single

**Position: Central** 

**Orientation: Tangential** 



Number: Single

**Position: Temporal** 

**Orientation: Tangential** 



Number: Single

**Position: Temporal** 

**Orientation: Oblique** 



#### Number: Single

Position: Temporal

**Orientation: Oblique** 



#### MEG System "Model-2020"



✓ More-channels and higher density
 ✓ Wider coverage including face and neck
 ✓ Shorter distance between sensor and scalp

#### Number: Single

**Position: Temporal** 

**Orientation: Oblique** 



No unique solution in inverse problem ... (Helmholtz)

## **Separation of Two Signals**



## MEG in Sendai, since 1988









#### EEG-MEG powered by ... (2008)







# What's the difference between EEG and MEG in practice?

Introduction • Theory & Practice • Evoked Responses Single Source • Dual Source • Epileptic Spikes Detectability • Localization Orientation Summary



#### **Somatosensory Evoked Fields**



R

## **Somatosensory Evoked Fields**



F/48 Meningioma

#### **Somatosensory Evoked Fields**



Nakahara et al. 2004





Kimura T, Ozaki I, Hashimoto I:

Impulse propagation along thalamocortical fibers can be detected magnetically outside the human brain.

J Neurosci 28: 12535-8, 2008

# What's the difference between EEG and MEG in practice?

Introduction • Theory & Practice • Evoked Responses Single Source Dual Source • Epileptic Spikes Detectability • Localization Orientation Summary



#### **Auditory Evoked Response (N100)**

#### EEG

#### MEG



#### **Normal Subject**

#### Auditory Evoked Response (N100)

#### EEG

#### MEG



**Skull Defect** 

## Auditory Evoked Response (N100)



## Practical Problems in Spontaneous EEG and MEG Activity

| Signal | Source Number           | Unknown, usually multiple                              |
|--------|-------------------------|--------------------------------------------------------|
|        | Source Extent           | Unknown, usually wide                                  |
|        | Source<br>Configuration | Unknown, usually complicated                           |
|        | Source Stability        | Unknown, usually moving,<br>expanding, and propagating |
| Noise  | Environmental<br>Noise  | Yes, but may be reduced technically                    |
|        | Brain Noise             | Yes, and hardly eliminated                             |

# What's the difference between EEG and MEG in practice?

Introduction • Theory & Practice • Evoked Responses • Single Source • Dual Source Spontaneous Activity Detectability • Localization Orientation Summary





Iwasaki M, et al. 2003



#### в

 Fp1-F7
 F7-Sp1

 F7-Sp1
 F7-Sp1

 Sp1-T7
 F7-P7

 F7-P7
 F7-O1

 P7-O1
 F7-O1

 J30uV





EEG





#### MEG





Unique MEG spike

Iwasaki M, et al. 2003



Iwasaki M, et al. 2003

E/M Μ EEG fre m E/M Μ mo ~~~ mou 1000 -mar and wind when when when 0000 mon m man www www . me. when while where who while why ~~~ were sitter men who who me 00000 -vilve me 00000 m adre والرقوقوه \*\*\*\* more Anterior سودره 0.5 pT/cm Right - 0.5 s mmmmm so \*MEG Waveform 6000 0000 Mm NW 0.1 pT/cm -0.1 s 04 Dipole 200 nAm Moment 9 m have ~~~ CAC 0 mont 50 uV 1 pT/cm 0.5 s MEG 0.2 pT/step R R M E/M

#### Park HM, et al. 2003

#### Scalp EEG may overlook small tangential spikes?

#### **Relative ECD Location (mm) and Moment (%)**



#### Scalp EEG may overlook small tangential spikes?



## Perilesional, Mirror and Remote Spikes in Single Cavernoma



Jin K, et al. 2007

## Perilesional, Mirror and Remote Spikes in Single Cavernoma



Jin K, et al. 2007

# What's the difference between EEG and MEG in practice?

Introduction • Theory & Practice • Evoked Responses • Single Source • Dual Source • Epileptic Spikes Detectability • Localization Orientation Summary



#### **Localization: Simple & Excellent**



#### **Localization: Simple & Excellent**



Slice no.150

Slice no.242

Slice no.303

## **Localization: Simple & Excellent**





### **Localization: Simple & Excellent**



 ECoG spike zone adjacent to MEG spike zone on the edge of resection cavity in previous surgery.

- Seizure free with no neurological deficit after cortical resection.

#### Intraopeartive ECoG and Cortical Resection



Iwasaki et al. 2002

## **Localization: Propagation**



## **Propagation Hypothesis: Anterior T.**



#### **Propagation Hypothesis: Non-Ant. T.**



# What's the difference between EEG and MEG in practice?

Introduction • Theory & Practice • Evoked Responses • Single Source • Dual Source • Epileptic Spikes Detectability • Localization Orientation Summary



**Benign Childhood Epilepsy with Centro-Temporal Spikes (BECCT)** 

- Idiopathic localization-related epilepsy
- Childhood-onset
- Motor and/or sensory symptom of orofacial, unilateral upper and/or lower limbs
- Rare seizure attacks

• Frequent spontaneous remission

## **Benign Rolandic Spikes**



Ishitobi M et al. 2005

## **Benign Rolandic Spikes**

#### **Frontal Lobe Theory Parietal Lobe Theory** (previous articles) (Ishitobi et al. 2005) C3/4P3/4 C3/4 P3/4 +++ **†††** Frontal Parietal Frontal Parietal Lobe Lobe Lobe Lobe Anterior Anterior Central Sulcus Central Sulcus

Ishitobi M et al. 2005







## Spike Orientation Did Not Predict ...



#### Central (Rolandic) Spike

Anterior Orientation: Frontal Side (100%)

Posterior Orientation: Parietal Side (100%)

#### Interhemispheric Spike

- Right Orientation: Right Hemisphere (100%)
- Left Orientation: Left Hemisphere (100%)

#### • Sylvian Spike in Temporal Lobe Epilepsy

- Downward Orientation: 73% of Sylvian spikes
- Opward Orientation: 27% of Sylvian spikes

#### **Exceptional** !

Salayev KA et al. 2006

#### **Sensorimotor Seizures of Pediatric Onset with Unusual Posteriorly Oriented Rolandic Spikes**

|   | Sex/Onset,<br>MEG | Atypical Seizures as<br>BECCT         | Seizure Frequency<br>(Max./Latest) | Others                                        |
|---|-------------------|---------------------------------------|------------------------------------|-----------------------------------------------|
| 1 | F/2, 22           | falling                               | weekly/weekly                      | PLE confirmed by ECoG                         |
| 2 | M/2, 29           | consciousness loss<br>with automatism | daily/daily                        |                                               |
| 3 | F/2, 3            | falling and head<br>dropping          | daily/ (-)                         | Mental retardation and<br>behavioral problems |
| 4 | F/3, 12           | posturing                             | daily/daily                        |                                               |
| 5 | F/3, 5            | head dropping                         | daily/ (-)                         | Transient graphomotor<br>impairment           |
| 6 | F/11, 23          | auditory<br>hallucinations            | monthly/monthly                    |                                               |
| 7 | F/12, 23          | auditory<br>hallucinations            | daily/daily                        |                                               |

#### Kakisaka Y. et al. 2009

Case 1 Case 8 R EEG -mmy/m 1.H. Fp2-F4 mal F4-C4 m C4-P4 mo P4-02 www Fp2-F8 F8-T4 ~~~~ T4-T6 mon Case 1 T6-O2 ECG 100 uV 100 uV 1.0 pT/cm 0.5 pT/cm 15 1 s MEG Step=200 fT R - Maria Marina m show

Kakisaka Y. et al. 2009

Case 8









# What's the difference between EEG and MEG in practice?

Introduction • Theory & Practice • Evoked Responses • Single Source • Dual Source • Epileptic Spikes Detectability • Localization Orientation Summary



# What's the difference between EEG and MEG in practice?

#### • Spike Detectability

- Theory: EEG detects radial and tangential currents, while MEG detects Tangential current only.
- Practice: Some are found in EEG only, MEG only, or both.

#### Spike Localization

- Theory: No unique solution in inverse problem (Helmholtz).
- Practice: Assumption is simpler in MEG than in EEG.
- Spike Orientation
  - Theory: Both EEG and MEG can be used to define orientation of tangential current (= sulcal activity).
  - Practice: MEG is more useful, neglecting radial current.