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Complex Partial Seizure

e Variously known as ‘psychomotor epilepsy’, ‘temporal lobe
seizure’, ‘petit mal epilepsy’, and ‘fugue state’

* Diagnosed by 3/second spike and wave in EEG

e Accompanied by loss or alteration of consciousness,
inattention (‘absence’), twitching of lips and eyelid, salivation
(drooling), lasting seconds up to a minute

e Commonly follows birth injury to the temporal lobe cortex
of the limbic system

How can we base treatment on knowledge of neurodynamics?
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stimulus onset: 40/second pulses
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Stability and Instability

* An epileptic seizure results from a state transition due to a
breakdown 1n normal stabilization.

 To understand the mechanism, it 1s necessary to know
how brains normally stabilize their active states.

 The background “‘spontaneous™ activity of brains comes
from mutual excitation of excitatory neurons.

e The activity level i1s stabilized by the thresholds and
refractory periods of action potentials, not by inhibition.

* Excess inhibitory bias causes the instability 1n this seizure.
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Each new pattern of neural activity occupies the whole bulb. It reflects

knowledge, not information. From Freeman and Schneider, 1978
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The circles represent neural
populations - KO sets.

Interactive neurons form KI sets
in positive feedback that gives
the “spontaneous’ activity.

KII negative feedback among
excitatory and inhibitory cells
gives the gamma oscillations.

Positive & negative feedback
with long distributed delays in
the KIII set generates the
aperiodic EEG. It 1s controlled
by a nonconvergent attractor in
cortical state space: “chaos”.
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The “open loop” evoked potential 1s derived by single shock electrical
stimulation of the olfactory tract in animals under deep anesthesia, which
suppresses ‘spontaneous’ electrical activity in bulb and cortex.
Feedback gain, Kee, in KI sets, 1s the cortical control parameter in learning.
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The same current that controls unit firing causes the EEG, but only with
summation over the neighborhood - a mesoscopic variable.
The EEG 1s a measure of the order parameter of cortical dynamics.
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Pulse density, q
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The equation is derived from the Hodgkin-Huxley equations. The nonlinear
forward gain, given by the derivative, is the basis for the destabilization of the
bulb by receptor input with inhalation, inducing oscillatory bursts.

The asymmetry of nonlinear gain is crucial for phase transitions in perception.
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The periglomerular population is
stabilized at a non-zero point
attractor. Its spectrum approximates
1/f*, o = 2, called Brown noise.
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The mitral-granule populations are
stabilized at a limit cycle attractor.
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Comparison of ECoG recordings with simulations: normal vs. seizure
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 How 1s background activity generated?

e How is it stabilized?

e “Spontaneous’ activity arises by mutual

excitation 1n populations in positive feedback.

e It 1s stabilized by refractory periods,
not by inhibitory feedback.
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The impulse response of the periglomerular neurons is non-oscillatory. The
peak of the PSTH rises with stimulus intensity; decay rate increases.
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Periglomerular threshold reveals a non-zero point attractor
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With decreasing stimulus intensity, response amplitude
extrapolates to zero at threshold.

With decreasing amplitude the rate of return to baseline
slows to zero rate at threshold.

This result implies that mutual excitation is self-stabilizing.
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What 1s the role of negative feedback by
inhibitory interneurons?

e How do gamma AM patterns form?

e “Spontaneous’ oscillations arise by negative
teedback with distributed feedback delays.

e Bursts form with increased feedback gain
(synaptic interaction strength) on input.
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Explicit symmetry breaking by evoked act|V|ty > background activity
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on single shock stimulation of primary olfactory nerve.
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Mode 2 holds only when evoked activity < background.
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With increasing
amplitude, the
decay rate
decreases =
diminished
stability.

If the trajectory
crosses the
iImaginary axis,
the approach to the

limit cycle attractor

leads to a singularity
and phase transition.



Spontaneous symmetry breaking leads to percept formation.
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Transition to seizure by explicit symmetry breaking on collapse of excitation.
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The shift of the operating point along the root locus is determined
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Electric stimulus, 10/second
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Conclusions — normal function

* The brain 1s an open, dissipative thermodynamic system that
continually creates itself by repetitive phase transitions.

e Spontaneous activity 1s by positive feedback - mutual excitation —
that 1s stabilized by refractory periods, giving a point attractor.

* Inhibition provides negative feedback that sustains scale-free broad-
band oscillations and maintains a limit cycle attractor.

* The three feedback gains — excitation, inhibition, negative feedback —
are normally equal, maintaining a state of symmetry.

* Perception 1s by spontaneous symmetry breaking under controlled
excitatory input from sensory receptors.
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Conclusions — epileptic function

e Experimentally, complex partial seizures are triggered in the
olfactory system by strong excitation to the point of transmitter
depletion, which i1s shown by the collapse of an EPSP.

e The driven activity of inhibitory interneurons creates an explicit
symmetry breaking in runaway inhibition, which is shown by an
IPSP of the excitatory neurons repeating at 3/sec.

e This implies that the seizure results from an instability that
emerges in a KIi neural population that has been bombarded by an
excess excitation that suddenly collapses.

* The IPSPs are evidence for excessive positive feedback gain
among the mutually inhibitory neurons.
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Clinical use of Neurodynamic Theory

1. Prevention of seizure onset

The runaway inhibition implies that seizure
prevention is best done first by removing
the source of abnormal excitation, and
then by use of GABA blockers such as Na
valproate to reduce abnormal inhibitory
activity and/or inhibitory bias.
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Before seizure onset, the diameter of cooperativity decreases, as predicted.
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Ruiz YG, Guang L, Freeman WJ, Moreira EG. (2007) A New Approach to Detect
Stable Phase Structure in High Density EEG Signals in The T1st Intern. Conf.
Cognitive Neurodynamics. Shanghai, China: Springer, Ch. 128, pp. 741-745.



Clinical use of Neurodynamic Theory

2. Prediction of seizure onset

Measure the phase gradient,
calculate the phase velocity, and
calculate the phase cone diameter.

That index of the degree of inhibitory
bias predicts the likely onset of a
complex partial seizure at least
a minute before onset.
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Methods: Four patients with medically

refectory epilepsy comprise the series. In all
cases definite localization of epileptic seizures
was established from intracranial EEG
recordings. A minute long interictal scalp EEG
was selected for analysis. All samples were at
least 2 hours distant from an electrographic
seizure and there were no interictal
epileptiform discharges. Data were imported
in Matlab. Excessively noisy channels were
eliminated by replacing them with the
averages of their neighbors. Data were
collected with 250 samples/sec. Data were
filtered in theta (4-7 Hz), alpha (7-12 Hz), beta

Holmes, Ramon, Freeman, 2008.
Relation of phase
synchronization index to
epileptogenic regions of cortex.

American Epilepsy Society
5-9 December 2008
Seattle WA, USA

(13-30 Hz) and low gamma (30-50 Hz) bands.
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256 Channel EEG data
collection. (Left) electrode
layout, (right) Electrode net on a
subject.



Results: 1n all four cases, electrode plots revealed regions of maximal

LRTC of phase synchronization index (SI) that closely matched with the
invasive localizations. However, LRTC of scalp EEG did not show such a
good match with invasive localizations. For one patient, results in all bands
are given below. LRTC: Long Range Temporal Correlation  Sl: sychrony index
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Holmes MD, Ramon C, Freeman WJ (2008) Correlation of phase synchronization

in high density interictal scalp EEG: Relationship to epileptogenic regions. Amer.
Epilepsy Soc, 5-9 Dec 2008, Seattle WA.
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Clinical use of Neurodynamic Theory

3. Prediction of seizure location

Calculate EEG analytic phase for six nearest
neighbors of each channel and average for the
synchronization index (Sl) at every channel.

The plots of the Sl for scalp EEG from 256
channels show hot spots at locations that are
identified as seizure sites by invasive recording.
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