

Electrical Source Imaging in Epilepsy

Christoph M. Michel Neurology Department, University Hospital Geneva

Electric Source Imaging (ESI)

EEG

mann how many why was why have a for the working com and a second a P4 proving and pro 02 what when and the way of the second and the second seco March / har my man WAM how when the more thank the second when the second when the second secon Fp1 rs www. a how when the way when the second of the second o P3 Warman Markan Mark 10 march man from the stand of 13 marsh war war war war and a start and a C2 month and and a second and a

- Method Head and source models
- Spatial resolution Number of electrodes
- Temporal resolution Propagation
- Multimodal imaging ESI / fMRI combination

The forward problem: from active neurons to scalp EEG

Equivalent current dipole

Volume conduction

Scalp potential field

The inverse problem: from scalp EEG to active neurons

Scalp potential field

Current density distribution

No unique solution

Infinite number of source configurations can produce the same surface map

Electric Source Imaging (ESI)

The inverse problem: from scalp potential to active neurons

Michel et al., Clin. Neurophysiol., 2004

ESI : Source Models

Search for one or a few equivalent dipoles

Number of dipoles must be known. Solution by Least Square Methods (Non-linear iterative optimization)

Calculation of a 3D current distribution

Underdetermined system → A priori constraints needed

ESI: Distributed linear inverse solutions Estive

Underdetermined system \rightarrow A priori constraints needed

Distribution with maximal smoothness = Laplacian Minimization LORETA, Pascual-Marqui, 1994

Spatial attenuation of the current = Local autoregressive average LAURA, Grave de Peralta, 2001

Michel et al., Clin. Neurophysiol., 2004

Comparison of different algorithms

ESI : Head Models

Spherical model

Does not consider individual anatomy

Analytical solution

Realistic head model (BEM, FEM)

Anatomically constrained solution

Zhang et al., 2008

Complex, needs detailed segmentation of the MRI including the interfaces of the different head compartments

Numerical solution

ESI : The SMAC Head Model

ESI in anatomically constrained spherical head models (SMAC)

Spinelli et al., Brain Topogr., 2000

ESI in individual MRI

ESI in Epilepsy: the Result

Averaged Spike (128 channel recording)

30 patients (11 male, 19 female); age range: 1-20 years, mean age 10.6 years

All but one patient had abnormal MRI

- 6 hippocampal sclerosis (HS) w/wo temporal lobe atrophy.
- 18 cases with different kinds of cortical lesions
- 2 tuberous sclerosis (TS)
- 5 hemispheric atrophy (HA).

All patients had epilepsy surgery (24 resections, 6 hemispherotomies)

Follow up:

- 27 of the patients were seizure free 2-60 (mean 13) months after surgery
- 1 patient had 2 short seizures 3 months postoperatively
- 2 patients without follow up information, although no indications of remaining seizures.
- **Recordings:** 21-32 channel standard clinical EEG recordings

Analysis:

- Selection of 20-60 spikes with similar topography
- Alignement to time point of maximal Global Field Power
- Statistical parametric mapping in the inverse space
- Concordance with respect to the resected area

Study 1: ESI in children

Sperli et al., Epilepsia, 2006

Concordance of different imaging methods with resected area

	PET	SPECT	ESI
Temporal	8/11	8/10	10/13
13 pat.	73%	80%	77%
Frontal	6/7	3/6	7/7
7 pat.	86%	50%	100%
Parieto-Occ	4/5	2/3	5/5
6 pat.	80%	67%	100%
Hemispheric	5/5	3 / 4	5/5
5 pat.	100%	75%	100%
TOTAL	23/28	16/23	27/30
31 pat.	82%	70%	90%

Sperli et al., Epilepsia, 2006

Pat. 1: mesial temporal lobe epilepsy

21 electrodes

128 electrodes

Epileptic source localization with high density EEG: how many electrodes are needed ?

14 patients with partial epilepsy. Seizure-free after surgery

- Recording of 123-channel interictal EEG and selection of ~30 spikes.
- Down-sampling of the data to 63 and to 31 electrodes.
- Source reconstruction separately for 123, 63, and 31 electrodes
- Delineation of the epileptogenic lesion in the MRI (MRI lesion in 12, iEEG recording in 2)
- Calculation of the distance of the source maximum to the epileptogenic lesion for each single spike.

ESI : How many electrodes are needed ?

Spatial frequency of the surface electric field < 3 cm → More than 100 electrodes are needed on a adult head

- Spitzer et al., 1989
- Gevins et al., 1990
- Pflieger and Sands, 1995
- Babiloni et al., 1996
- Srinivasan et al., 1996, 1998
- Lantz et al., 2003

Impedance of the skull is lower than assumed (1:20 instead of 1:80) \rightarrow More than 256 electrodes needed at realistic noise levels

- Ryynänen et al., 2004, 2006
- Lai et al., 2005
- Goncalves et al., 2003

Impedance of the skull in newborns is lower than in adults \rightarrow More electrodes needed in children than in adults

- Grieve et al., 2004
- Fifer et al., 2006

ESI with High Density EEG

- 128 – 256 channel saline sponge net (Electrical Geodesics Inc.) mounting time: 10-20 minutes

-Electrode positions determined by Photogrammetry (Electrical Geodesics Inc.) recording time: 5 minutes

UNIVERSITÉ DE GENÈVE

consecutive series of 44 patients with intractable epilepsy

22 males, 22 females, mean age: 24.8 +/- 12.2 years. 15 patients <= 16 years, 5 patients <= 10 years. Mean age of epilepsy onset: 9.9 years (s.d. 6.9).

Group 1 (24 patients)

focus was unambiguously localized and patients were operated. 13 mTLE, 4 neocortical TLE, 7 ETLE.

Intracranial iEEG in 5 patients. 21 patients seizure-free after surgery.

Group 2 (8 patients)

focus was strongly suggested but patients were not operated. 1 neocortical TLE, 7 ETLE, MRI normal in 5 patients, no iEEG.

23

Group 3 (12 patients)

No evidence for a discrete focus, indication for a predominant area in 5. MRI normal in 10, diffuse abnormalities in 2, iEEG in 2 patients.

Group 1 & 2 (N=32):

Evaluation of correct localization on a lobar level: (subtemporal, lateral temporal, frontal, parietal, occipital)

Result:

Correct Localization in 29/32 patients (90.6%)

Incorrect localization in 3 patients:
1. Wrong side of a mesial occipital focus
2. Wrong side of a mesial occipital focus
3. A lateral temporal focus was localized mesial temporal
(Patient is not seizure free after DNET operation. Post-op control EEG suggested additional mesial focus → Source Localization correct ?)
→ Yield: 93.7%)

24

Study 3: 128-channel ESI

Michel et al., J. Clin Neurophysiol., 2004

UNIVERSITÉ DE GENÈVE

Study 3: 128-channel ESI

5/24 patients with incorrect localization

Hippocampus sclerosis with selective hippocampectomy Source in the basal temporal cortex. Propagated spikes?

Only 4 low-amplitude spikes recorded. **Bad signal-to-noise ratio?**

Multiple lesions (tubers) right frontal and temporal. Spikes that were averaged were not homogenous?

Focus close to the interhemispheric fissure. Incorrect assumption of electrode placement?

Patient NOT seizure-free after DNET lesionectomy. **Post-op control EEG suggested additional mesial focus** \rightarrow Source Localization correct ? \rightarrow **79%** correct localization Michel et al., J. Clin Neurophysiol., 2004

13 patients

- intractable epilepsy
- large lesions in MRI
- High resolution EEG ESI (128-256 channels)
- all underwent surgery

8 females, 5 males, mean age: 15.9 years (5-54). Mean age of epilepsy onset: 6.6 years (0-31)..

N=12 with Engel Class I outcome N= 1 with Engel Class III outcome

+ 1 patient not operated (with EEG / fMRI confirming ESI)

Study 4: ESI in Patients with Large Lesions

UNIVERSITÉ DE GENÈVE

Brodbeck et al., J. Clin Neurophysiol., 2009

ESI outside resected region

N=13 +1 Localization of the source maximum within resected area: 11 of 12 seizure free patients = 91%

2 / 13 patients with incorrect localization

<u>Case 1:</u>

reduced seizure frequency (Engel Class III) ESI: Imcomplete resection of epileptogenic area. Source adjacent but anterior to resected area, close to somatosensory cortex + supplementary area temporal right

<u>Case 2:</u> Seizure free after resection (Engel Class I) ESI = Right Insular Source Resection = Frontal not including the ESI indicated zone (Post OP complications Haemorrhage in insular region with possible "antiepileptic effect"?)

Brodbeck et al., J. Clin Neurophysiol., 2009

10 patients

- intractable epilepsy
- no lesion detectable in high resolution MRI
- EEG ESI (19-256 channels)
- all underwent surgery

7 females, 3 males, mean age: 2.8 to 57.1 years (mean 23.7) Mean age of epilepsy onset: 0.3 to 18 years (mean 8.7).

N= 9 with Engel Class I-II outcome N= 1 with Engel Class III outcome

Study 5: ESI in Non-Lesional Epilepsy

Post OP MRI defined resection aproximate resected region ESI (LAURA)

ESI outside resected region

N=10

Localization of the source maximum within resected area: 8 of 9 seizure free patients = 89 %

Brodbeck et al., submitted

2 / 10 patients with incorrect localization

Case 1: unchanged seizure frequency (Engel Class IV) ESI: Source adjacent but lateral to resected area Invasive ictal recordings suggested seizure onset in resected zone

<u>Case 2:</u> Seizure free after resection (Engel Class I) ESI = Left temporo-parietal Source Resection = Parieto-Occipital, not including the ESI indicated zone

but: EEG for ESI with only 19 electrodes

Brodbeck et al., submitted

Propagation of interictal epileptiform activity

Alarcon et al., 1994	Depth and surface EEG
« Interictal epileptiform activity can privatively remote cortex »	ropagate within several milliseconds to
Engel, 1993	Depth and surface EEG
« Secondary spike foci occur in areas	that are well-connected by fiber tracts
to the primary epileptogenic region	»
Alarcon et al., 1997	<i>Electrocorticography</i>
« Propagation and recruitment of neu	ronal activity along specific neural pathways »
<i>Ebersole, 1999</i>	Depth EEG
« Spike propagation that is mesial to 	ateral and anterior to posterior temporal »
<i>Merlet & Gotman, 1999</i>	Depth EEG
« Strong and time-locked interactions	between temporal and orbito-frontal regions »
Scherg et al., 1999	<i>EEG source modelling</i>
« Spike propagation to posterior and a	anterior temporal regions is typical »
<i>Huppertz et al., 2001</i>	<i>EEG source modelling</i>
« Spike propagation to anterior, poste	rior, and partly to contralateral regions »
<i>Merlet et al., 1996</i>	<i>EEG source modelling</i>
« Source propagation of interictal spil	kes in temporal lobe epilepsy »

ESI: Temporal Resolution

Propagation of interictal epileptiform activity

Duration of a spike-wave complex ~ 200 ms

Different scalp potential map topographies during this period

Different source configurations in the brain during this period

Propagation of interictal epileptiform activity can lead to erroneous source localizations

16 patients with partial epilepsy, all with MRI lesion (10 temporal , 6 extratemporal). All seizure-free after surgery

- Recording of 123-channel interictal EEG and averaging of ~25 spikes.
- Temporal segmentation with k-means spatial clustering method
- Source reconstruction using EPIFOCUS of each segmentation map using the patient's own brain as head model.
- Delineation of the epileptogenic lesion in the MRI
- Calculation of the distance of the source maximum to the epileptogenic lesion for each segmentation map.

Study 6: Spike propagation

Lantz et al., J. Clin Neurophysiol., 2003

Study 6: Spike propagation

Lantz et al., J. Clin Neurophysiol., 2003

Study 6: Spike propagation

38

Lantz et al., J. Clin Neurophysiol., 2003

Multimodal Imaging

Metabolic / Haemodynamic Functional ImagingSPECTfMRIIctal-interictalspike-triggered vs. control

Multimodal Imaging

Spike-triggered functional MRI

Seeck, Lazeyras, Michel, et al., Electroenceph Clin Neurophysiol, 1998

UNIVERSITÉ DE GENÈVE

SOURCE IMAGING OF THE EEG RECORDED OUTSIDE THE SCANNER

Two independent study of two different groups

Study 7: (Greoning et al., Neuroimage, 2009)

Group of M. Siniatchkin, Kiel, Germany

- 6 children with refractory focal epilepsy (4 with lesions, age range: 5.5 15.4)
- consistent focus localisation by EEG, PET and SPECT (and by MRI lesion in 4)
- 32-channel EEG in 3T MR scanner
- SOURCE IMAGING OF THE SAME SPIKES THAT WERE USED FOR fMRI ANALYSIS

Study 8: (Vulliemoz et al., Neuroimage, 2009)

Group of L. Lemieux, London, UK

- 9 adult patients with refractory focal epilepsy (8 cryptogenic in 8, 1 with dysplasia)
- Total 12 types of IED
- validation with intracranial EEG in 3 patients
- 32- or 64-channel EEG in 3T MR scanner
- SOURCE IMAGING OF THE SAME SPIKES THAT WERE USED FOR fMRI ANALYSIS

fMRI EEG 0 100 200 ms 1st time period 2nd time period ESI

Patient recorded in Kiel, Germany

Study of Group 1: Greoning et al., Neuroimage, 2009

Intracranial EEG (9 depth electrodes): Mesial orbito-frontal IED onset

Study of Group 2: Vulliemoz et al., Neuroimage, 2009

Study of Group 1 (Kiel): Greoning et al., Neuroimage, 2009

ESI:

- localization of spike onset correct in all cases
- Propagation in 5/6 cases

fMRI:

- significant BOLD in focus area in 4/6 cases
- other active areas in 5/6

ESI-fMRI correspondence: at least one area in all cases Study of Group 2 (London): Vulliemoz et al., Neuroimage, 2009

ESI:

- localization of spike onset correct in 10/12 cases
- Propagation in all cases

fMRI:

- significant BOLD in focus area in 8/12 cases
- other active areas in all cases

ESI-fMRI correspondence:

- with positive BOLD in 4/12
- with negative BOLD in 4/12
- mean Euclidian distance between ESI and fMRI: 23 mm

Mapping of eloquent cortex with ESI

Left Thumb (N = 23)

Right Thumb (N = 23)

The case:

- 12 year old boy, born prematurely at 33rd week, with cesarean section
- 1st seizure at age 3
- Normal schooling, best of his class
- Seizure semiology: feeling of vertigo (« head spins ») → pale, nauseous, LOC (1x/month)
- Neurostatus: normal, right-handed
- Ophthalmology: normal
- Neuropsychology: normal except discrete diminished verbal fluency.
- MRI: complex right hemispheric developmental malformation: large voluminous cyst over the right frontal lobe, posterior ventricle enlargement with dysplastic gyri, 2 fronto-central schizencephalies, peri-insular dysplastic cortex.

Pat. R. Multimodal Imaging

Pat. R. Multimodal Imaging

256-channel Spike ESI

EEG-controlled Spike fMRI

Pat. R. Multimodal Imaging

Motor fMRI

Left Hand Right Hand

Left Hand

pneumatic 256-ch SEP Motor fMRI ESI 256-ch spike

56

